Learning a New Programming Language

Ronald Blaschke

Bowling Green State University

Computer Science

Bowling Green State University
Bowling Green, Ohio 43402
$Date: 2000/05/04 04:35:37 $
$Revision: 1.2 $ ($State: Final §); available online at

http://www.cosy.sbg.ac.at

“rblasch /study/cs665 /essay /

Learning a New Programming Language

Abstract

Learning a new programming language can be difficult and the
pressure of “getting a job done” in an unknown language is even
more difficult. But what are the common mistakes and how can
they be avoided? And if you have the choice of giving the task to a
novice and an experienced programmer, whom should you choose?
Or does this not matter, since both of them don’t know the new
language? We will try to answer these and other questions and
point out what is important when learning a new programming

language.

Introduction

Almost every programmer is sooner or later confronted with learning a new
programming language. Many computer science studies start with a procedural
language, like Pascal or Ada, to show basic algorithms and data structures. Later
on, for example in an operating systems course, one may have to use C or C++.
The study may also include the introduction to a functional language, like LISP
or Haskell, and to a logical language, like Prolog. Or a programmer may work on
a project where the use of a specific language is required. Even if one wants to
extend an editor like Emacs or Microsoft Word with macros a user may find

himself learning a new language. In short, it is quite unlikely that a programmer

Learning a New Programming Language

has to know only one language. We want to discuss some issues related to
learning a new language and answer questions like: What are the most important
cognitive factors for learning a new language? Is there a lot of negative transfer
to the new language, i.e. are concepts learned in a former language transferred to
the new language, but are there inappropriate? And what is of most help when

learning a new language?

Structures and Plans

First, we need to introduce two terms that turn out to be important: Structure

and Plans.

Structures

Plans

A structure describes the way something is build. For our analysis we distinguish
between syntactic and semantic structure, as identified by Scholtz and
Wiedenbeck ([2], [3]). The syntactic structure refers to the syntax of a

programming language, for example the characters needed to start a comment.

The semantic structure refers to the semantic of a programming language, for
example if a variable needs to be declared or not or if the function read() reads a

whole line or a single character.

Learning a New Programming Language

A plan is, in simple terms, how someone intends to do something. For our
analysis we have strategic, tactical and implementation plans, as identified by
Soloway et al. ([12]). The highest level of abstraction is the strategic plan. At
this level we are language-independent and only concerned with the basic idea of
doing something. An example would be the main loop of a server: Get request,
process it and start over again. Even such high level things like incremental

programming fall into strategic planning.

The tactical plan is more detailed, but still language-independent. It is a local

strategy or algorithm for solving a problem.

Finally, the implementation plan is at the level of the programming language, i.e.
the actual constructs a programmer would use to implement the
language-independent tactical plans. Note that this is still somewhat above the
syntax and the semantics we described above. Programmers don’t worry about
“should there be a semicolon or not,” but for example think about “is there a

loop construct to iterate over a list?”

For example, say we want to translate all uppercase characters to lowercase

characters. A strategic plan may look like this.

loop
read character from input
translate character

write character

Learning a New Programming Language

Another example might be.
loop
read line from input
translate characters in line

write line

A tactical plan for the first example is.
while (characters on input)
read character
if character is uppercase then translate to lowercase

write character

And for the second example.
while (lines on input)
read line
translate all characters in line to lowercase

write line

Further refinement leads to an implementation plan, e.g. for the language C.
char c;
while (¢ = getChar()) {

print("%c", tolower(c));

Or for example the second in Perl.

while(<>) {print lc}

Learning a New Programming Language

Of course, there are lots of plans to solve the problem.

Novice Programmers

As expected, novice programmers seem to have the hardest time learning a new
programming language. Their programming knowledge is very much connected to
the syntactic and semantic structure of the language (or languages) they know.
Canas et al. (|4]) tested two groups of programmers, one with and the other
without a debugging utility. Using a debugger was identified as enforcing a more
semantic representation, while not using one a more syntactic. They concluded

that both mental representations are equally effective.

The new structure of the new programming language seems to interfere with
knowledge from the past. Scholtz and Wiedenbeck ([1]) tested a group of novice
programmers and found that they often used the syntax of the former known
languages (inexperienced programmers even used natural language). Extra

training is needed to overcome this.

Syntax errors are quite hard for inexperienced programmers, who often find error

messages to be unintelligible (Scholtz and Wiedenbeck [11]).

For more experienced programmers the syntax seems not to be a big problem.
Many programmers who already know a programming language simply assume a
certain pattern, mostly similar to the previously learned languages, as already

mentioned. In other words, programmers have strong expectations about the

Learning a New Programming Language

syntax. The reason why programmers go easy with the syntax seems to be the
fact that a program will not compile with a syntax error. Also, the error
messages are often quite clear to them. Problems with the syntax are easily

resolved with a look in the reference manual (Scholtz and Wiedenbeck [11]).

Semantic errors, on the other hand, are different. A program may compile and
even run with semantic errors. To make things worse, error messages which result
at run time from semantic errors are not very easy to use to find the errors. As
programmers become aware of this they tend to be more careful using them.

They make sure that they understand the semantics of a construct first (Scholtz

and Wiedenbeck [11]).

Nonetheless, the most important factors are the plans. As Rist (|9]) discovered,
they seem to be available for recall after their first creation and tell us how our
solution to a problem should look like. But each programming language has its
own concepts, it’s own style. If the unfamiliar concepts of the language are
ignored suboptimal solutions occur and valuable features remain unused. This
happens if one is trying to use the same plan as in a known language, or if the
focus is on trying to get a working program rather than learning the language

concepts |2].

Strategic plans are the most general, language-independent form of plans.
Programmers worry very little about them, simply because they are so general.

Some plans are so general that they could be applied to almost any problem, like

Learning a New Programming Language

“It strongly suggests to write the program incrementally.” (Scholtz and

Wiedenbeck [11])

Tactical plans, which are basically the algorithms, are more frequent, yet still
language-independent. The key point at this level is how many plans are
available to a programmer, how many ways does he know to do something.

Needless to say that this is a weak point of novice programmers.

Implementation plans deal with applying the language-independent tactical plans
to the target programming language. It is easy when a construct is analogous to
the construct of a known language. But things get complicated when a
programmer can’t figure out how to implement their tactical plan. If even the
documentation can’t help the programmers revise their tactical plans (Scholtz

and Wiedenbeck [11]).

Even if a programmer is able to find a correct construct for what he is planning
to do it is nonetheless possible that he uses the construct inappropriately (Scholtz

and Wiedenbeck [11]).

This iterative interaction between tactical plans and implementation plans is
important. It shows that programmers are not efficient in applying their past

planning knowledge to solve problems (Scholtz and Wiedenbeck [11]).

Experienced Programmers

Under certain conditions experts may be as good as novices. Chase and Simon

Learning a New Programming Language

([6]) performed an experiment where both, chessmasters and novices, had to
remember valid and invalid configurations of chessboards. It turned out that the
chessmasters were much better than the novices in remembering the valid
chessboards, but they performed equally good for invalid boards. McKeithen ([7])
and Shneiderman (|8]) found that this applies to computer programs too. In
short, the knowledge of experts may be nullified at some time [2]. The question
is: Can this happen here too? Can a novice learn a new programming language

as fast as an experienced programmer?

It doesn’t seem so. Wu and Anderson ([5]) conducted an experiment where they
had programmers who knew Pascal, Prolog or LISP. The experiment showed that
someone who knows Prolog seems to learn LISP faster than someone who knows
Pascal, and vice versa, simply because of the common elements of the languages,

like recursion.

The knowledge of experienced programmers seems to be not as connected to a
programming language as it is for a novice (Scholtz and Wiedenbeck [3|). This
means that an experienced programmer can focus more on planning rather than

the syntax and semantic of the language (Scholtz and Wiedenbeck [2]).

Experienced programmers seem also to be aware that the syntax of a language is
essentially arbitrary. They know that it must be absolutely correct, or the
program will not compile. Therefore they allocate time and attention to it. But

again, they take it easy because the compiler will catch any errors.

Learning a New Programming Language

The statements for novice programmers concerning semantics seem to hold for
experienced programmers too. They tend to be careful using semantic structures
because they know that these errors are hard to find. But it appears that, as in
the case of syntax, programmers efficiently apply their past knowledge (Scholtz
and Wiedenbeck [11]).

Strategic plans seem to have almost the same importance for experienced
programmers than for novices. This may simply be because this level is that

abstract.

Tactical and implementation plans are a major issue for novice programmers and
are so for experienced. Moreover, the ability to generate alternative tactical plans

has been identified as a characteristic of more experienced program designers

(Scholtz and Wiedenbeck [11]).

Conclusions

So, what are the main points that are done wrong by programmers learning a
new language? First, programmers use familiar, well-understood tactical plans
when they begin to program in a new language. As a result, their tactical plans,
and accordingly their programs, look more like a program in their known
language, if at all. Sometimes the languages differ that much that the plans can’t

be implemented at all (Scholtz and Wiedenbeck [11]).

As Scholtz and Wiedenbeck observed, programmers don’t concentrate on the

10

Learning a New Programming Language

strengths and weaknesses of the new language, but worry about low-level issues

like “are there arrays in the new language?”

When learning a new language, the first thing to do is to get the big picture how
the language is supposed to be used. Then one should have a look at the most
important aspects of the language. Seeking help from others who know the
language or reading parts of the documentation seems to be a good idea. If you
are writing the documentation point out the important features of the language
at the beginning. The proper use of the language should be introduced as soon as

possible.

Novices need some extra help in the beginning with the syntax and semantic of
the new language. Experts, on the other hand, do not need this additional help,
because their plans are often disconnected from a specific language. Although it
should be fully documented for reference, it is a minor issue when learning a new
language. The single exception is when there are constructs with different

semantics in different languages. These constructs need to be pointed out.

Scholtz and Wiedenbeck ([11]) concluded in an experiment that 40% of their
subjects’ efforts were spent for syntax and semantic problems, but these were

resolved quickly and smoothly.

Plans and their creation are most important when learning a new language, for
novices and experts. For example, was the language designed to work on lines or

characters of input? Even if the language was designed for lines of input, working

11

Learning a New Programming Language

on characters of input may also be possible because most languages are flexible
enough. But the solution plans are suboptimal and non-idiomatic, i.e. the
language is used improperly. Thus, focusing on the tactical and implementation

plans seems to be a key to success.

Scholtz and Wiedenbeck (|11]) concluded, in the same experiment as before, that
“the true source of difficulties lies in tactical planning and its interplay with

implementation planning.”

So, when writing a tutorial or tutoring program (cf. Fix and Wiedenbeck [10])
the important aspects of the language should be highlighted. Showing the
differences to another language, known by the programmer, makes it a lot easier

for him to create the correct plans.

Fix and Wiedenbeck (|10]) did this by creating the tutoring tool ADAPT (Ada
Packages Tool). The purpose was to help students that already knew Pascal or C
to learn to use Ada packages. They do this by presenting a problem and several
plans to solve it. If a programmer chooses a plan it is refined and several further
ways to refine it are presented. The programmer thereby walks all the way down

to the actual implementation of Ada code, thus learning to use Ada packages.

In order to further reduce the amount of negative transfer, i.e. transfer of
concepts that are right in another language but are inappropriate in this one,
they added buggy plans that are as said: Appropriate in another language (C or

Pascal), but not in this one (Ada).

12

Learning a New Programming Language

As Scholtz and Wiedenbeck ([11]) pointed out, a critiquing approach which
started with presentation of how a problem might be solved in a familiar way and
then shifted to a discussion of how it could be solved more effectively using the

unique features of the new language might be most helpful.

If you want to take a single statement from this review with you I suggest the

following.
Scholtz and Wiedenbeck

The main focus in teaching and learning second and subsequent programming

languages should be on designing algorithms appropriate to the new language.

References

|1| Empirical Studies of Programmers: Fith Workshop, Edited by Curtis Cook,
Edited by Jean Scholtz, Edited by and James Spohrer, 1993, 231 pages,
1-56750-088-9, Ablex Publishing Corporation, Norwood, An Analysis of
Novice Programmers Learning a Second Language, Jean Scholtz and Susan

Wiedenbeck, 1993, pages 187-205.

[2] Interacting With Computers, 1993, 130 pages, Butterworth-Heinemann Ltd.,
vol. 5, no. 1, “Using Unfamiliar Programming Languages”: The Effects on

Expertise, Jean Scholtz and Susan Wiedenbeck, 1993, pages 13-30.

[3| International Journal of Man-Machine Studies, 1992, 130 pages, Academic

Press, vol. 37, no. 2, “The Role of Planning in Learning a New Programming

13

Learning a New Programming Language

Language”, Jean Scholtz and Susan Wiedenbeck, 1992, pages 191-214.

[4] International Journal of Human-Computer Studies, 1994, 175 pages, Academic
Press, vol. 40, no. 5, “Mental Models and Computer Programming”, Jose

Juan Canas, Maria Teresa Bajo, and Pilar Gonzalvo, 1994, pages 795-811.

|5] Workshop - Institut National de Rechereche en Informatique et en
Automatique, 1992, Le Chesnay, no. 8, Knowledge Transfer among

Programming Languages, Q. Wu and J. Anderson, 1992, pages 183-196.

[6] Visual Information Processing, 1973, Academic Press, “The Mind’s Eye in
Chess”, William Chase and Herbert Simon, 1973.

[7] Cognitive Science, 1981, pages, Cognitive Science Society, Inc., vol. 5,
“Knowledge Organisation and Skill Differences in Computer Programmers”,

Katherine McKeithen, 1981, pages 307-325.

[8] International Journal of Computer and Information Sciences, 1976, Plenum
Publishing Corporation, vol. 5, no. 2, “Exploratory Experiments in

Programmer Behavior”, Ben Shneiderman, 1976, pages 123-143.

[9] Cognitive Science, 1989, 171 pages, Cognitive Science Society, Inc., vol. 13, no.

3, “Schema Creation in Programming”, Robert Rist, 1989, pages 389-414.

[10] Computers Education, 1996, Elsevier Science Ltd., vol. 27, no. 2, “An
Intelligent Tool to Aid Students in Learning Second and Subsequent

Programming Languages”, Vikki Fix and Susan Wiedenbeck, 1996, pages

14

Learning a New Programming Language

71-83.

[11] International Journal of Human-Computer Interaction, 1990, Ablex
Publishing, vol. 2, no. 1, “Learning Second and Subsequent Programming
Languages”: A Problem of Transfer, Jean Scholtz and Susan Wiedenbeck,
1990, pages 51-72.

[12] Directions in Human-Computer Interaction, Edited by A. Badre Edited by
and B. Shneiderman, 1984, Ablex Publishing, “What do novices know about

programming?”, E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, 1984.

15

